Linear Code

If the linear combination of codewords is also a codeword, the code is called a linear code.

c1,c2Cac1+bc2Cc_1, c_2 \in C \land a \cdot c_1 + b \cdot c_2 \in C

where a,bFqa, b \in \mathbb{F}_q.

Reed-Solomon (RS) codes, which are commonly used, satisfy this property and are therefore linear codes. (This property allows the folding operation to be used in RS-based FRI.)

Enc(f1)={f1(ω),f1(ω2),f1(ω3),f1(ω4)}Enc(f2)={f2(ω),f2(ω2),f2(ω3),f2(ω4)}Enc(af1+bf2)={af1(ω)+bf2(ω),af1(ω2)+bf2(ω2),af1(ω3)+bf2(ω3),af1(ω4)+bf2(ω4)}\mathsf{Enc}(f_1) = \{f_1(\omega), f_1(\omega^2), f_1(\omega^3), f_1(\omega^4)\} \\ \mathsf{Enc}(f_2) = \{f_2(\omega), f_2(\omega^2), f_2(\omega^3), f_2(\omega^4)\} \\ \mathsf{Enc}(a\cdot f_1 + b \cdot f_2) = \Big\{ \begin{aligned} a\cdot f_1(\omega) + b\cdot f_2(\omega), a\cdot f_1(\omega^2) + b\cdot f_2(\omega^2), \\ a\cdot f_1(\omega^3) + b\cdot f_2(\omega^3), a\cdot f_1(\omega^4) + b\cdot f_2(\omega^4) \end{aligned} \Big\}

The traditional encoding function used in RS-codes involves FFT operations. However, due to the limitations mentioned earlier, alternative encoding methods must be explored.

Written by ryan Kim from A41

Last updated