LogoLogo
LogoLogo
  • Introduction
    • About Us
    • Notations & Definitions
      • MPC
      • ZK
    • Contribute to this Site!
  • Primitives
    • Multiplication
      • Karatsuba Multiplication
      • Toom-Cook Multiplication
    • NAF (Non-adjacent form)
    • Chinese Remainder Theorem (CRT)
    • Euclidean Algorithm
      • Extended Euclidean Algorithm
      • Binary Euclidean Algorithm
      • Extended Binary Euclidean Algorithm
    • Coding Theory
      • Linear Code
    • Number Theoretic Transform
    • Abstract Algebra
      • Group
        • -Morphisms
        • Batch Inverse
      • Elliptic Curve
        • Weierstrass Curve
          • Coordinate Forms
          • Fast Elliptic Curve Arithmetic and Improved WEIL Pairing Evaluation
        • Edwards Curve
          • Coordinate Forms
          • Twisted Edwards ↔ Short Weierstrass Transformation
        • Batch Inverse for Batch Point Additions
        • Scalar Multiplication
          • Double-and-add
          • GLV Decomposition
        • MSM
          • Pippenger's Algorithm
          • Signed Bucket Index
          • CycloneMSM
          • EdMSM
          • cuZK
        • 2-Chain and 2-Cycle of Elliptic Curves
    • Encryption Scheme
      • ElGamal Encryption
    • Modular Arithmetic
      • Modular Reduction
        • Barrett Reduction
        • Montgomery Reduction
      • Modular Inverse
        • Bernstein-Yang's Inverse
    • Multiset Check
    • Sumcheck
    • Commitment Scheme
      • Fflonk
      • SHPlonk
      • Zeromorph
  • MPC
    • Yao's Garbled Circuits
    • GMW
    • BMR
  • ZK
    • Arithmetization
      • R1CS
      • PLONK
      • AIR
    • Folding
      • LatticeFold
      • Nova
        • Nova over Cycles of Curves
    • Lookup
      • Lasso
      • LogUp-GKR
    • SNARK
      • Groth16
      • HyperPlonk
      • Spartan
        • SPARK
    • STARK
      • Additive NTT
      • Basefold
      • Binius
      • Brakedown
      • CircleSTARK
      • FRI
        • FRI Security Features and Optimizations
      • DEEP FRI
      • STIR
      • WHIR
    • Distributed ZK
      • Ryan's Trick for Distributed Groth16
  • Application
    • zkLogin
    • zkHoldem
    • zkTLS
      • DECO
      • Proxying is enough
  • zkVM
Powered by GitBook
On this page
  • Definition
  • Properties
  • Examples
Export as PDF
  1. Primitives
  2. Abstract Algebra

Group

Definition

A group is defined as a set GGG closed under a binary operation ★ and is usually instantiated as<G,★><G, ★><G,★>.

If our operation ★ = +++ or is addition, we call this an Additive Group.

If our operation ★ = ∗*∗ or is multiplication, we call this a Multiplicative Group.

Properties

Groups hold 4 properties:

  1. Closure aka “closed”

    1. x★yx★yx★y is in GGG, for all x,yx,yx,y in GGG

  2. Associativity

    1. (x★y)★z=x★(y★z)(x★y)★z = x★(y★z)(x★y)★z=x★(y★z), for all x,y,zx,y,zx,y,z in GGG

  3. Identity

    1. There exists a single “eee” in GGG such that x★e=e★x=xx★e = e★x = xx★e=e★x=x

  4. Inverse

    1. There exists an x−1x^{-1}x−1 in GGG such that x★x−1=x−1★x=ex★x^{-1} = x^{-1}★x = ex★x−1=x−1★x=e , where “eee” refers to the “eee” of the identity property

If the Commutative property is also valid (x★y=y★x,x★y = y★x,x★y=y★x, for all x,yx, yx,y in GGG), then the group is called an “Abelian Group.”

Examples

  1. <Z<\mathbb{Z}<Z, +>+>+> additive for the set of all integers ✅ (valid group)

    1. closure ✅

    2. associativity ✅

    3. identity a+0=0+a=aa + 0 = 0 + a = aa+0=0+a=a ✅

    4. inverse a+(−a)=(−a)+a=0a + (-a) = (-a) + a = 0a+(−a)=(−a)+a=0 ✅

  2. <Z<\mathbb{Z}<Z, ∗>*>∗> multiplicative for the set of all integers ❌ (not a valid group)

    1. closure ✅

    2. associativity ✅

    3. identity a1=1a=aa1 = 1a = aa1=1a=a ✅

    4. inverse a∗1a=1a∗a=1a * \frac{1}{a} = \frac{1}{a} * a = 1a∗a1​=a1​∗a=1, but 1a\frac{1}{a}a1​ does not necessarily exist in Z\mathbb{Z}Z ❌

PreviousAbstract AlgebraNext-Morphisms

Last updated 1 month ago