LogoLogo
LogoLogo
  • Introduction
    • About Us
    • Notations & Definitions
      • MPC
      • ZK
    • Contribute to this Site!
  • Primitives
    • Multiplication
      • Karatsuba Multiplication
      • Toom-Cook Multiplication
    • NAF (Non-adjacent form)
    • Chinese Remainder Theorem (CRT)
    • Euclidean Algorithm
      • Extended Euclidean Algorithm
      • Binary Euclidean Algorithm
      • Extended Binary Euclidean Algorithm
    • Coding Theory
      • Linear Code
    • Number Theoretic Transform
    • Abstract Algebra
      • Group
        • -Morphisms
        • Batch Inverse
      • Elliptic Curve
        • Weierstrass Curve
          • Coordinate Forms
          • Fast Elliptic Curve Arithmetic and Improved WEIL Pairing Evaluation
        • Edwards Curve
          • Coordinate Forms
          • Twisted Edwards ↔ Short Weierstrass Transformation
        • Batch Inverse for Batch Point Additions
        • Scalar Multiplication
          • Double-and-add
          • GLV Decomposition
        • MSM
          • Pippenger's Algorithm
          • Signed Bucket Index
          • CycloneMSM
          • EdMSM
          • cuZK
        • 2-Chain and 2-Cycle of Elliptic Curves
    • Encryption Scheme
      • ElGamal Encryption
    • Modular Arithmetic
      • Modular Reduction
        • Barrett Reduction
        • Montgomery Reduction
      • Modular Inverse
        • Bernstein-Yang's Inverse
    • Multiset Check
    • Sumcheck
    • Commitment Scheme
      • Fflonk
      • SHPlonk
      • Zeromorph
  • MPC
    • Yao's Garbled Circuits
    • GMW
    • BMR
  • ZK
    • Arithmetization
      • R1CS
      • PLONK
      • AIR
    • Folding
      • LatticeFold
      • Nova
        • Nova over Cycles of Curves
    • Lookup
      • Lasso
      • LogUp-GKR
    • SNARK
      • Groth16
      • HyperPlonk
      • Spartan
        • SPARK
    • STARK
      • Additive NTT
      • Basefold
      • Binius
      • Brakedown
      • CircleSTARK
      • FRI
        • FRI Security Features and Optimizations
      • DEEP FRI
      • STIR
      • WHIR
    • Distributed ZK
      • Ryan's Trick for Distributed Groth16
  • Application
    • zkLogin
    • zkHoldem
    • zkTLS
      • DECO
      • Proxying is enough
  • zkVM
Powered by GitBook
On this page
Export as PDF
  1. Introduction
  2. Notations & Definitions

MPC

PreviousNotations & DefinitionsNextZK

Last updated 1 month ago

n-Party MPC

MPCn(f,w1,…,wn,x)→f(w1,…,wn,x)\mathsf{MPC}_n(f, w_1, \dots, w_n, x) \rightarrow f(w_1, \dots, w_n, x)MPCn​(f,w1​,…,wn​,x)→f(w1​,…,wn​,x)

n-Party MPC (Multi-Party Computation) is a cryptographic protocol that allows nnn parties to jointly compute a function f(w1,…,wn,x)f(w_1, \dots, w_n, x)f(w1​,…,wn​,x) over their respective private inputs without revealing them to each other.

In other words:

  • For 1≤i≤n1 \le i \le n1≤i≤n, each party pip_ipi​ holds a secret input wiw_iwi​

  • A shared input xxx is known to every party

  • They compute f(w1,…,wn,x)f(w_1, \dots, w_n, x)f(w1​,…,wn​,x) without disclosing their inputs

This approach is designed for privacy-preserving computation in security-sensitive environments, enabling collaboration without compromising data confidentiality.

Notation for fff without a shared input is as follows:

MPCn(f,w1,…,wn)→f(w1,…,wn)\mathsf{MPC}_n(f, w_1, \dots, w_n) \rightarrow f(w_1, \dots, w_n)MPCn​(f,w1​,…,wn​)→f(w1​,…,wn​)