LogoLogo
LogoLogo
  • Introduction
    • About Us
    • Notations & Definitions
      • MPC
      • ZK
    • Contribute to this Site!
  • Primitives
    • Multiplication
      • Karatsuba Multiplication
      • Toom-Cook Multiplication
    • NAF (Non-adjacent form)
    • Chinese Remainder Theorem (CRT)
    • Euclidean Algorithm
      • Extended Euclidean Algorithm
      • Binary Euclidean Algorithm
      • Extended Binary Euclidean Algorithm
    • Coding Theory
      • Linear Code
    • Number Theoretic Transform
    • Abstract Algebra
      • Group
        • -Morphisms
        • Batch Inverse
      • Elliptic Curve
        • Weierstrass Curve
          • Coordinate Forms
          • Fast Elliptic Curve Arithmetic and Improved WEIL Pairing Evaluation
        • Edwards Curve
          • Coordinate Forms
          • Twisted Edwards ↔ Short Weierstrass Transformation
        • Batch Inverse for Batch Point Additions
        • Scalar Multiplication
          • Double-and-add
          • GLV Decomposition
        • MSM
          • Pippenger's Algorithm
          • Signed Bucket Index
          • CycloneMSM
          • EdMSM
          • cuZK
        • 2-Chain and 2-Cycle of Elliptic Curves
    • Encryption Scheme
      • ElGamal Encryption
    • Modular Arithmetic
      • Modular Reduction
        • Barrett Reduction
        • Montgomery Reduction
      • Modular Inverse
        • Bernstein-Yang's Inverse
    • Multiset Check
    • Sumcheck
    • Commitment Scheme
      • Fflonk
      • SHPlonk
      • Zeromorph
  • MPC
    • Yao's Garbled Circuits
    • GMW
    • BMR
  • ZK
    • Arithmetization
      • R1CS
      • PLONK
      • AIR
    • Folding
      • LatticeFold
      • Nova
        • Nova over Cycles of Curves
    • Lookup
      • Lasso
      • LogUp-GKR
    • SNARK
      • Groth16
      • HyperPlonk
      • Spartan
        • SPARK
    • STARK
      • Additive NTT
      • Basefold
      • Binius
      • Brakedown
      • CircleSTARK
      • FRI
        • FRI Security Features and Optimizations
      • DEEP FRI
      • STIR
      • WHIR
    • Distributed ZK
      • Ryan's Trick for Distributed Groth16
  • Application
    • zkLogin
    • zkHoldem
    • zkTLS
      • DECO
      • Proxying is enough
  • zkVM
Powered by GitBook
On this page
  • Homomorphism: A structure preserving map between 2 objects.
  • Endomorphism: A homomorphism where domain and codomain are the same object.
  • Isomorphism: A bijective homomorphism. (i.e., it has an inverse that is an homomorphism).
  • Automorphism: An isomorphism from an object to itself. Equivalently, it is a bijective endomorphism.
Export as PDF
  1. Primitives
  2. Abstract Algebra
  3. Group

-Morphisms

PreviousGroupNextBatch Inverse

Last updated 3 months ago

Homomorphism: A structure preserving map between 2 objects.

  • e.g., f:Z→Z4,f(x)=xmod  4f: \mathbb{Z} \rightarrow \mathbb{Z}_4, f(x) = x \mod 4f:Z→Z4​,f(x)=xmod4

  • homomorphism: \begin{align*} f(m + n) &= (m + n) \mod 4\\ &=(m \mod 4) + (n \mod 4) \\ &= f(m) + f(n) \end{align*}

Endomorphism: A homomorphism where domain and codomain are the same object.

  • e.g., f:Z→Z,f(x)=2⋅xf: \mathbb{Z} \rightarrow \mathbb{Z}, f(x) = 2\cdot xf:Z→Z,f(x)=2⋅x

  • homomorphism: \begin{align*} f(m + n) &= 2(m + n) \\ &= 2m + 2n \\ &= f(m) + f(n) \end{align*}

Isomorphism: A bijective homomorphism. (i.e., it has an inverse that is an homomorphism).

  • e.g., f:Z4→Z4,f(x)=3⋅xmod  4f: \mathbb{Z}_4 \rightarrow \mathbb{Z}_4, f(x) = 3 \cdot x \mod 4f:Z4​→Z4​,f(x)=3⋅xmod4

  • homomorphism: \begin{align*} f(m + n) &= 3(m + n) \mod 4 \\ &= (3m + 3n) \mod 4 \\ &= (3m \mod 4) + (3n \mod 4) \\ &= f(m) + f(n) \end{align*}

  • bijection: Since gcd⁡(3,4)=1\gcd(3, 4) = 1gcd(3,4)=1, multiplication by 3mod  43 \mod 43mod4 is invertible. Its inverse is multiplication by 333 itself, because 3⋅3=9≡1mod  43 \cdot 3 = 9 \equiv 1\mod 43⋅3=9≡1mod4.

Automorphism: An isomorphism from an object to itself. Equivalently, it is a bijective endomorphism.

  • e.g., the example above is also an example of automorphism. TODO: Find a better example.

Written by from

A41
ryan Kim